
1

DoP open Standard
Method for transferring DSD Audio over PCM Frames

Version 1.1

The USB Audio specification 2.0 defines multiple formats for audio of which standard PCM is only
one. A general “raw data” format was also defined that can be used for any kind of data including
audio, but unfortunately, no specific format was defined for DSD and with the ongoing
proliferation of USB converters in the current market it appears that the opportunity for the official
USB specification to adopt a single common method of transferring DSD audio via USB is slowly
disappearing. This is an attempt of uniting as many manufacturers as possible and jointly defining
a method for transferring DSD via USB. While this method is mainly targeted for USB links it is
general enough to be applied to other PCM based links such as Firewire, AES/EBU, S/PDIF etc.

1. Motivation
The manufactuers developing audio playback software want to minimize the number of formats
they need to support for a USB link. Ideally there is only a single such format. Likewise hardware
manufacturers want to make their hardware compatible with as many playback platforms as
possible. That, of course, only happens when all use the same format.
As mentioned above, USB Audio already supports a “raw data” format that could be used for
DSD and that would create a clear separation to any audio data path containing PCM. However,
the latest release of Apple’s operating system OS 10.7 incorporates a USB driver that only
supports PCM. Furthermore, the central audio engine, CoreAudio, inside the OS only supports
PCM as well, luckily with no limitation on sample rate. (earlier versions supported a mode that
was compatible with raw data mode, but that is history). Since the architecture of Apple’s OS
forces audio software developers to use CoreAudio for everything audio related there is basically
only 1 format left for the Mac platform: PCM. Creating a separate path for DSD would involve a lot
of surgery if it is even possible. So we have no choice, but to use a PCM path to transfer DSD
audio by using special flags or headers that allow the receiving hardware to detect a format
change and switch their decoder accordingly.
When using the Windows platform things are little easier: Windows by nature does not fully
support USB Audio 2.0 and what it does support is limited to PCM only at a sample rate of 96kHz
or less. There is no native driver support for higher resolution PCM and it is clear from the
beginning that a custom driver needs to be created for this platform whether it is for regular PCM
or DSD. Luckily a 3rd party software developer (Steinberg Audio) jumped in and created a driver
(called ASIO) already many years ago that supports PCM and DSD with no limitation on sample
rate or wordlength. It has become quite popular and many software vendors support this in the
meantime. ASIO is not directly a hardware driver, but sits between the audio playback application
and the hardware driver. Each hardware manufacturer still needs to develop a custom hardware
driver for their own hardware, but ASIO then creates a common interface standard for all
application software.

2. Solutions
As seen above the Windows platform basically offers a solution with the ASIO driver and the raw
data format supported by USB Audio 2.0. Not as ideal as having a dedicated DSD path via USB,
but this is safe and straightforward.
Since the Apple OS only allows a PCM path we have to find a way to put DSD audio data into
PCM frames that then get sent via the native USB driver. DSD has a sample size of 1 bit and a
sample rate of 2.8224MHz. In other words the data rate is 2.8224Mbits/sec. This is equivalent to
16 bit PCM at 176.4kHz. In order to clearly identify when this PCM stream contains DSD and
when it contains PCM we will need additional bits. The PCM format with the next higher bit rate is
24 bits at a sample rate of 176.4kHz. This gives us 8 bits for this marker of identifier. It seems a
bit overkill if all we need is 2 states (8 bits give us 256 states), but we will see that this extra
overhead comes in handy. Here is how we can use the 24 bits in each sample and for each
channel:

2

dm7 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15dm6 dm5 dm4 dm3 dm2 dm1dm0

DSD Marker (8 MSbits) 16 DSD Audio bits for 1 channel (oldest bit = t)0

 24 bit PCM FrameMSB LSB

The 8 most significant bits are used for the DSD marker and alternate with each sample between
0x05 and 0xFA. Each channel within a sample contains the same marker. This has been chosen
to minimize the click that might be experienced when the receiving hardware misinterpretes the
data as PCM when it really is DSD. If this should happen it would create a tone around 88kHz
and roughly -34db, nothing harmful and something that most D/A converters would suppress to
some degree before it even reaches the loudspeaker. It should be pointed out that hardware
manufacturers and software developers alike can easily use common safeguards to prevent such
cases of erroneous format switching and that they may only be limited to times during
development of hardware and software. It is their responsibility to prevent misinterpreted cases
and to test their products thoroughly before release. Misinterpreation of PCM data as DSD may
create less predictable clicks.

The remaining 16 lower bits are then used for the DSD data, first or oldest bit in slot t0. The USB
Audio specification assigns each PCM Frame to a specific channel (left, right etc.) and when used
for DSD streaming each PCM Frame contains only DSD data corresponding to its assigned
channel.

3. Solutions for double rate DSD (128FS) and beyond
Two solutions are possible depending on whether the used PCM transmission scheme is capable
of supporting the PCM rate of 352.8kHz or not:

1. The solution described above for 64FS DSD can easily be extended for 128FS by simply
raising the underlying PCM sample rate from 176.4kHz to 352.8kHz. All the marker bytes
and bit ordering remain the same.

2. For those conduits that do not support 352.8kHz (such as AES/EBU) an alternative
method can be used without raising the PCM sample rate:

Sample

0x06 16 DSD bits ch1

0x06 16 DSD bits ch1

0x06 16 DSD bits ch2

0x06 16 DSD bits ch2

0x06 16 DSD bits chn/2

t Sample

0xF9 16 DSD bits ch1

0xF9 16 DSD bits ch1

0xF9 16 DSD bits ch2

0xF9 16 DSD bits ch2

0xF9 16 DSD bits chn/2

t+1 Sample

0x06 16 DSD bits ch1

0x06 16 DSD bits ch1

0x06 16 DSD bits ch2

0x06 16 DSD bits ch2

0x06 16 DSD bits chn/2

t+2

PCM frame 1 =>
PCM frame 2 =>

PCM frame 3 =>

PCM frame 4 =>

PCM frame n =>

A PCM channel pair (for instance L/R) is used to transmit 128FS DSD for a single DSD
channel. The lower PCM frame number contains the 16 older DSD bits in the same order
as in the 64FS case. The higher PCM frame number in the pair then contains the newer
16 DSD bits. A different marker byte is used to distinguish this method from the first one.

Solution 1 can easily be extended to support even higher DSD rates by raising the underlying
PCM rate.

3

4. Recommended implementation
While there is certainly more than one way to implement this solution on the receiver side, the
authors found the following implementation to work reliably:
 In order to switch from PCM to DSD mode the receiver has to detect 32 consecutive DSD

marker bytes on all channels used.
 In order to switch from DSD to PCM mode the receiver has to detect at least 1 single

missing DSD marker byte in at least 1 channel.
This introduces an additional latency of around 180usec. If the USB buffers are accessible for
reading while the USB microframe is still being received then no additional delay is necessary.

If the transmission link used is USB it is recommended that for 128FS DSD the first solution
described in section 3 is used, or else significant bandwidth is wasted for PCM transmission as
the second solution always requires double the amount of channels than is necessary for PCM
transmission.

In order to minimize false detection where DSD data would be interpreted as PCM or vice versa it
is recommended that the host software verifies the DSD capability of the hardware before
exchanging any data. This can be done in various ways and depends on physical link, driver and
computer platform.

5. Industry Support
The following have contributed to this document and/or pledged their support for this format
(alphabetical order):

Aesthetix Jim White
Audirvana Damien Plisson
Benchmark Media Systems John Siau
CEntrance Michael Goodman
CH-Precision Thierry Heeb,

Florian Cossy
ChannelD Rob Robinson
dCS Andy McHarg,

David J Steven
JRiver, Inc. Matt Ashland
Light Harmonic Larry Ho

Merging Technologies Dominique Brulhart
MSB Technology Larry S. Gullman
Mytek Digital Michal Jurewicz
Playback Designs Andreas Koch
Signalyst Jussi Laako
Sonic Solutions Jon Reichbach
Wavelength Audio Gordon Rankin
XMOS Ali Dixon
Vitus Audio Martin Kristensen
Independent Dustin Forman

6. Revision History

4

Ver Date Authors Description
0.1 2012/01/20 Andreas Koch, Andy McHarg,

Rob Robinson
Initial version

0.2 2012/02/07 Andreas Koch, Andy McHarg,
Rob Robinson

Updated Industry support section, added
recommended implementation

0.3 2012/02/09 Andreas Koch, Andy McHarg,
Rob Robinson

Updated industry support section, clarified
channel assignment, deleted
recommendation about ASIO driver.

1.0 2012/02/17 Andreas Koch, Andy McHarg,
Rob Robinson

Release version 1.0

1.0.1 2012/03/08 Andreas Koch, Andy McHarg,
Gordon Rankin, Michal
Jurewicz

Changed title, added section for 128FS
solutions, updated industry support section

1.0.2 2012/03/19 Andreas Koch, Andy McHarg,
Gordon Rankin, Michal
Jurewicz

Updated section 4 and 5.

1.1 2012/03/30 Andreas Koch, Andy McHarg,
Gordon Rankin, Michal
Jurewicz

Release version 1.1

